20t^2+135t+3050=15000

Simple and best practice solution for 20t^2+135t+3050=15000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20t^2+135t+3050=15000 equation:



20t^2+135t+3050=15000
We move all terms to the left:
20t^2+135t+3050-(15000)=0
We add all the numbers together, and all the variables
20t^2+135t-11950=0
a = 20; b = 135; c = -11950;
Δ = b2-4ac
Δ = 1352-4·20·(-11950)
Δ = 974225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{974225}=\sqrt{25*38969}=\sqrt{25}*\sqrt{38969}=5\sqrt{38969}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(135)-5\sqrt{38969}}{2*20}=\frac{-135-5\sqrt{38969}}{40} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(135)+5\sqrt{38969}}{2*20}=\frac{-135+5\sqrt{38969}}{40} $

See similar equations:

| 4a+19=-3a-7 | | 10x^2+88x-110=0 | | 10/x+8/x^2=3 | | 10x^2+88x+125=0 | | 7/n=21/12 | | x^2+88x-110=0 | | -216-(1+7(1+8m))=0 | | ((5x12)-3)=+30-50 | | 91=-7(3a-10 | | n+2/n=19/3 | | n+2n=19/3 | | 3y+3y=0 | | 132-u=238 | | 3/(x-2)=5/(x+1) | | 2/5x+15=5-6 | | 8/17y+4/5=4/5 | | 3/x-2=5/x+1 | | -1/4x=-30 | | 1100x+4x2=4464 | | 4/5x+10=-5/4x+33 | | 6x+12=13x-57 | | 9y+8=1/2y-4 | | -1/2y-4=9y+8 | | 1/2y-4=9y+8 | | 3x+74=8 | | 8-3(b-5)=30 | | 27=9^-x+2 | | 3y+6y=12 | | 30/(x+4)=6 | | 5/20=25/x | | x/2=x/4 | | 23=3w-13 |

Equations solver categories